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INTRODUCTION
There have been great advances related to impact of microbiota 
on cancer immunology [1]. It is a well-known fact that cancer 
grows in close proximity to microbiota starting from primary 
lesion to metastasis to distant sites [2]. It has been postulated 
that composition of gut microflora influences anticancer immune 
surveillance by both cytoprotection and immunosuppression. In 
addition, the gut inhabitants also play a cardinal role in determining 
the therapeutic response of the anticancer treatment of the patient 
[3]. In a nutshell, microbiota research has revolutionised both 
the scientific and clinical aspect of cancer immunology unveiling 
fascinating insights into cancer therapy.

CRC is the fourth most common cause of cancer and second most 
common cause of mortality among cancer worldwide. The 5 year 
prevalence rate of CRC is about 4.7 million cases with 8.8 lakh deaths 
worldwide in the year 2018 [4]. Highest incidence rates are seen in 
Australia, New Zealand, Canada, the United States and parts of 
Europe whereas the lowest risk occurs in countries like China, India, 
parts of Africa and South America [5]. Diet and lifestyle are crucial 
factors that affect the pathogenesis of CRC [6]. As inflammation plays 
an important role in the aetiopathogenesis of CRC, in this review we 
will discuss the role of gut inhabitants in carcinogenesis with main 
emphasis on microbial metabolism and inflammation.

The collection of microorganisms that live in peaceful co-existence 
with their hosts are termed as the microbiota or microflora. The 
microbiota colonise all surfaces of the human body that are exposed 
to external environment including skin, genitourinary, gastrointestinal, 
and respiratory tracts [7]. The large intestine contains the densest 
microbial community containing over 70% of all the microbes 
in the human body [8]. Anerobic bacteria, the Bacteroidetes and 
the Firmicutes dominate the large colon, whereas Proteobacteria, 
Verrucomicrobia and Actinobacteria are present in minor proportions 
[9]. The gut microbes which appear at birth are similar to mother’s 
vaginal microflora. The microflora undergo changes and start 
resembling the adult’s flora after 1 year of age [10]. There are several 
factors like genetic makeup and dietary habits of the individual which 
influence the composition of gut flora [11,12]. There are two types of 
fecal microflora in the general population namely Low Gene Count 
(LGC) and High Gene Count (HGC). The LGC microflora shows less 
diversity and has more of bacteroides and less of Firmicutes [13]. On 
the other hand HGC are characterised by more diversity of gut flora 
and more of Firmicutes. In 2013, Cotillard A et al., postulated that 
individuals with obesity have LGC microbe community and weight 
loss diet improved microbial diversity, and which ultimately drifted 

towards HGC [14]. This result emphasises on the importance of diet 
on modulating the composition of gut flora.

ImpORTANCe Of mICRObIOTA IN The 
INTesTINe
[Table/Fig-1] depicts the importance of microbiota in the intestine. 
The microbiota benefits the host’s gut by restricting the pathogen’s 
growth by colonising and occupying the attachment sites in the gut, 
and consuming the available nutrients [15]. It not only produces 
but also stimulates the host to produce antimicrobial substances 
(AMP-Antimicrobial peptides). These AMPs prevent overgrowth 
of commensals and prevent invasion from pathogens [16]. The 
gram positive bacteria such as Lactobacillus prevent Listeria 
infection in vitro through production of antimicrobial substances 
and modulation of immune responses of the epithelial cells 
[17]. The microbes help in maximising the caloric availability of 
ingested nutrients by extracting additional calories [18]. They help 
in fermenting the undigested dietary components (mucin, non-
starch polysaccharides and resistant starch) into short chain fatty 
acids like acetate, propionate and butyrate in the ratio 3:1:1 [19]. 
In addition, the microbes also promote the uptake of fatty acids 
into adipocytes by suppressing the inhibition of lipoprotein lipase 
[20]. The metabolism of xenobiotics including pharmaceuticals 
is associated with contribution from both host and microbiota. 
Therefore, a new concept of pharmacometabonomics has now 
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AbsTRACT
Colorectal Cancer (CRC) accounts for sizeable disease burden globally. The symbiotic association between gut inhabitants and the 
digestive tract contributes to gut homeostasis. Studies suggest that altered microbiota composition or dysbiosis can contribute 
to colorectal carcinogenesis. This review outlines the complex interplay between the microbiome, diet and CRC with a special 
emphasis on microbial metabolites, gut barrier function, specific bacterial species which influence the micro environment by 
various mechanisms like oxidative stress, DNA damage, immune modulation and inflammation. This would help in establishing 
novel diagnostic, prognostic markers and newer therapeutics for CRC.

[Table/fig-1]: Importance of microbiota.
SCFA: Short chain fatty acid
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like hydrogen, carbon dioxide, methane, and hydrogen sulphide [32]. 
Most fermentation occurs in the proximal large bowel and the luminal 
environment where the pH turns acidic due to increased formation of 
SCFAs [33]. Apart from indirect benefit of generating SCFA, dietary 
fibers have many direct advantages. The undigested fibers bind to 
carcinogens and hence are eliminated through feces [34]. Dietary 
fibers increase the bulk of feces and results in shorter transit times 
with minimal interaction between carcinogens and mucosal cells 
[35]. As the bulk of the colon content increases, it also results in 
dilution of carcinogens which serves as another added benefit [36].

emerged. The gut inhabitants are associated with degradation of 
dietary oxalates that underlines their role in prophylactic treatment in 
calcium oxalate nephrolithiasis [21,22]. It also degrades hydrazine, 
a known industrial toxin and acts as a detoxifier [23].

ROle Of mICRObIOTA IN 
AeTIOpAThOgeNesIs Of CRC
[Table/Fig-2] shows the role of microbial metabolism in the 
aetiopathogenesis of CRC. There are several models for microbial 
involvement in colorectal carcinogenesis. The first model states that 
single microbe causes disease aetiology, for example Helicobacter 
pylori causing gastritis. The second model says that initially host 
factors initiate disease pathology followed by change and alteration 
in microbiota leading to dysbiosis. The third model suggests that 
some gut inhabitants can aggravate or reduce the intensity of 
certain infections however clinical relevance remains debatable 
[24]. Accumulating evidence suggests that microbial metabolism 
influences CRC aetiopathogenesis [24]. These metabolites produced 
by gut flora impact carcinogenesis by various mechanisms.

[Table/fig-2]: Role of microbial metabolism in the aetiopathogeneis of colorectal 
cancer.
SCFA: Short chain fatty acid; CRC: Colorectal cancer

[Table/fig-3]: Role of dietary fibers in protection against colorectal cancer.

3. phytochemicals
Present as glycosides in the large intestine where it is transformed 
by gut microbiota. These newly formed metabolites inhibit pro-
inflammatory mediators like TNF-α, NF-κβ and prostanoids and 
thereby contribute to healthy gut environment [37].

DeTRImeNTAl meTAbOlITes

1. Nitrogenous products
In high protein diets, nitrogenous products produced by fermentation 
of protein in colon can cause deleterious effects in the gut environment 
[38]. These compounds are formed endogenously via acid-driven 
nitrosation of amines in the stomach and microbial fermentation 
in the intestine [39]. It is suggested that the nitro reductases and 
nitrate reductases that catalyse nitrosation reactions are encoded 
by proteobacteria. The nitrogenous products which can be formed 
are branched-chain fatty acids, phenylacetic acid and N-nitroso 
compounds (NOCs) [40]. NOCs exert carcinogenic effects via DNA 
alkylation that causes mutations and leads to cancer [41].

2. polyamines
Polyamines (putrescine, spermidine and spermine) synthesised by 
the gut bacteria and the host cells, are involved in the maintenance 
of the structural integrity of membranes and nucleic acids, gene 
regulation and translation [42,43]. Certain gut bacteria (such as 
enterotoxigenic Bacteroides fragilis) also upregulate polyamine 
production by host cells thus leading to high levels of polyamines 
[44]. The polyamine catabolism can lead to oxidative stress which is 
further associated development of cancer.

3. hydrogen sulphide
Studies suggest that by-products of metabolism of dietary proteins 
(suphur containing amino acids and taurine) such as hydrogen 
sulphide produced by sulfate reducing bacteria can be carcinogenic 
to the gut mucosa due to its cytotoxic effects [45,46]. Moreover, it 
has been reported that sulphide also prevents oxidation of butyrate, 
and is genotoxic due to ROS production [47,48]. Any modification of 
microbiota towards non-sulphate reducing bacteria (methanogenic 
bacteria) reduces the risk for colon carcinoma.

4. bile Acids
High-fat diet lead to an increase in bile secretion, and increased 
fecal bile acid concentrations and are associated with the higher 
incidence of CRC [49]. When diet supplemented with deoxycholic 
acid is fed to rats, a decrease in the production of SCFAs along 

pROTeCTIve meTAbOlITes

1. short Chain fatty Acids (sCfAs)
The major bacterial fermentation products are the SCFAs namely 
butyrate, propionate and acetate. Butyrate is used as energy source 
by gut epithelium [25]. Butyrate and propionate when transported into 
host cells participate in epigenetic modification by directly inhibiting 
histone deacetylases in colonocytes and immune cells [26]. This leads 
to hyperacetylation of histones which further results in down regulation 
of pro-inflammatory cytokines (IL-6 and IL-12) in colonic macrophages 
which accounts for their anti-inflammatory effect [27]. Additionally, 
histone H3 acetylation in the promoter and enhancer region of 
Forkhead box P3 (FOXP3), leads to increased expression of FOXP3 
and hence differentiation of regulatory T cells [28]. These SCFAs can 
also exert indirect effects by stimulating G protein-coupled receptors 
(GPCRs) on the surface of colonocytes and immune cells [28]. Hence, 
both Histone deacetylases (HDAC) inhibition and GPCR signaling 
results in an increase in total colonic regulatory T cell (cTReg) number 
and the production of anti-inflammatory Interleukin-10 (IL-10) and 
Transforming Growth Factor-β (TGFβ). In addition, HDAC inhibition is 
also thought to promote apoptosis of CRC cells [29]. Hence, butyrate 
is shown to prevent carcinogenesis by its anti-inflammatory and anti-
apoptotic effect. Butyrate also assists the assembly of tight junctions 
by the activation of AMPK and thereby promotes the intestinal 
barrier function [30]. SCFAs lower the pH of colonic lumen resulting 
in various effects. This lower pH decreases the carcinogenic activity 
of secondary bile acids and the bacterial enzyme 7-α-dehydroxylase 
which converts primary to secondary bile acids. Since the solubility of 
calcium also increases at lower pH, higher concentration is available 
for binding with bile acids. As a result it has been seen that lower fecal 
pH is associated with lower risk of colon cancer [31].

2. Dietary fibers
[Table/Fig-3] shows the role of dietary fibers in protection against 
CRC. The bacterial anaerobic fermentation of dietary fibers converts 
them into SCFAs, mainly acetate, propionate, butyrate and gases 
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with major changes in the composition of the gut microflora was 
observed [50].

The primary bile acids cholic acid and chenodeoxycholic acid are 
produced in the liver from cholesterol, are conjugated to glycine 
or taurine (which render the bile acids more hydrophilic) and are 
excreted into the duodenum to facilitate fat digestion. Majority 
of the primary bile acids are reabsorbed in the terminal ileum 
for enterohepatic circulation. However, the fraction of bile acid 
(approximately 5% of the total pool) which skips enterohepatic 
circulation undergoes extensive transformation by the microbiota 
in the large intestine [51]. Bacterial strains and the methanogenic 
archaea have bile salt hydrolases which cleave glycine and taurine 
residues from the primary bile acids along with dehydrogenation 
and dehydroxylations converting them into secondary bile acids 
(deoxycholic acid and lithocholic acid) [52].

Bile acids have strong antimicrobial activities due to their amphipathic 
properties. They can damage bacterial cell membranes and are 
likely to modify the composition of the gut microbiota. Owing to the 
production of Reactive Oxygen Species (ROS) and Reactive Nitrogen 
Species (RNS) that causes DNA damage, bile acids have been 
implicated in carcinogenesis of the intestinal tract [53]. Secondary 
bile acids can promote carcinogenesis by various mechanisms. 
They are more hydrophobic and thus more potent at disrupting cell 
membranes. This leads to the generation of ROS via the activation 
of membrane-associated proteins such as NADPH oxidases and 
phospholipase A2 [54]. They can also induce NF-kB activation in 
intestinal epithelial cells and trigger proinflammatory cascade [55]. 
In-vitro studies indicate that their long term exposure can induce 
carcinogenesis by decreasing apoptosis and enhancing epithelial 
cell proliferation [49]. Thus, it can be postulated that both primary 
and secondary bile acids have potential as therapeutic targets for 
alleviating inflammation which promotes carcinogenesis.

Various other factors have also been implicated in linking high 
fat diet to CRC. In 2012, Devkota S et al., reported that taurine 
conjugation of primary bile acids increases due to high fat diet [56]. 
This increases the growth of sulphur reducing bacterium Bilophila 
wadsworthia that further promotes inflammation [57]. Furthermore, 
it has been observed that Clostridium, Ruminococcus can convert 
chenodeoxycholic acid (primary bile acid) into ursodeoxycholic acid 
which can have beneficial effects in humans [58]. However, in the 
presence of 7b-dehydroxylase enzyme, the given strain can also 
convert ursodeoxycholic acid to the potentially toxic lithocholic 
acid. Further studies are required to validate microbe-based bile 
acid metabolism approach for CRC prophylaxis, and identifying the 
bacterium which can form ursodeoxycholic acid.

5. ethanol (Alcohol)
Excessive consumption of ethanol is considered to be an important 
risk factor for several cancers [59]. Microbial metabolism may 
contribute to its toxicity, especially in the upper gastrointestinal tract. 
Acetaldehyde, a product of ethanol oxidation produced by microbial 
metabolism can cause DNA damage and degradation of the vitamin 
folate and is highly toxic and carcinogenic [60,61].

mICRObIOTA AND INflAmmATION
[Table/Fig-4] shows the determinants of inflammation and their 
role in colorectal carcinogenesis. The colonic mucosa is constantly 
exposed to the gut microbiota and its metabolites with potential 
to cause chronic low-grade inflammation [62]. Therefore, the role 
of microbiota in aetiopathogenesis of CRC becomes important as 
chronic inflammation is a risk factor for CRC [63]. It is seen that 
germ-free ApcMin (mice having mutation in one copy of the tumour 
suppressor gene Apc) exhibit a two-fold reduction in small intestinal 
adenomas compared with ApcMin mice with normal microbiota 
composition [64]. This highlights the role of microbiota in triggering 
inflammation.

The role of microbiota in inflammation is also underscored by the fact 
that altered Toll-Like Receptor-4 (TLR4) signaling is associated with 
CRC progression [65]. TLR4 is type of PRRs (Pattern Recognition 
Receptors) present in host that recognises Microorganism-
Associated Molecular Patterns (MAMPs) such as Lipopolysaccharides 
(LPS), nucleic acids elicits an inflammatory response [66].

One of the most pertinent mechanisms for microbial 
tumourigenesis is loss of barrier function in the colonic epithelium 
leading to enhanced microbiota-host interactions. The initial 
activation of β-catenin and mutation of the APC gene in colorectal 
tumourigenesis may result in a loss of barrier function in the colonic 
epithelium leading to translocation of microbial products into the 
tumour microenvironment and colonisation of invasive-adherent 
bacteria at neoplastic sites [67]. Barrier failure can result from 
primary defects in genes that encode proteins that are essential 
to maintain a functional barrier, or from secondary defects owing 
to infection, inflammation and carcinogenesis. Ulcerative colitis is 
also associated with defects in intestinal barrier which predisposes 
the affected individuals to increased risk of cancer [68]. This 
underlines the importance of barrier permeability in carcinogenesis 
and inflammation.

Fusobacterium nucleatum
High incidence of gram negative anerobe in adenoma implicates 
its role in tumour growth initiation and aetiopathogenesis of CRC 
[69]. Studies suggest that its role in commencing carcinogenesis 
can be attributed to binding of its FadA antigen with the 
E-cadherin on colonocytes leading to activation of Wnt/β-
catenin pathway [70,71]. This leads to uncontrolled cell division, 
loss of cell polarity and MSI tumour phenotype. It has also be 
known to bestow chemotherapeutic resistance by stimulating 
TLR-4 signaling and triggering autophagy by modulating 
regulatory microRNA [72]. Fusobacterium nucleatum is the most 
widespread strain associated with CRC and is associated with 
initiation, severity and modulating chemotherapeutic responses 
of the tumour [72].

Escherichia coli
E. coli is the most common cultivable, gram-negative, aero-
anaerobic commensal gut bacteria. It has four different phylogroups 
depending on the presence of virulence factors. Out of them B2 
and D are pathogenic and are involved in various diseases [73]. 
These strains synthesise several toxins called cyclomodulins such 
as Cytolethal Distending Toxins (CDT), Cytotoxic Necrotising Factor 
(CNF), cycle inhibiting factor, and colibactin [74]. Cyclomodulins are 
genotoxic and/or modulate cell-cycle progression, proliferation, cell 
differentiation, and apoptosis [75]. Colibactin, a hybrid polyketide 
nonribosomal peptide encoded by the pks genomic island can 
induce DNA double-strand breaks in the host cell and thereby 
activate DNA damage signalling cascades [76]. This can further 
lead to chronic mitotic and chromosomal aberrations as well as an 
increased frequency of gene mutation [77].

[Table/fig-4]: Determinants of inflammation and its role in colorectal carcinogenesis.
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Enterotoxigenic Bacteroides fragilis
Enterotoxigenic Bacteroides fragilis is also implicated in intestinal 
carcinogenesis [78]. It is anerobic bacteria constituting 1% 
of gut microbiota [79]. It has two subtypes nontoxigenic and 
enterotoxigenic. The enterotoxigenic type is associated with 
production of BFT toxin that induces Spermine Oxidase (SPO) 
generating ROS which leads to DNA damage in intestinal epithelial 
cells [80,81].

Recent Updates
Li Shizhen gave the notion of using yellow soup (containing fecal 
matter) to treat abdominal diseases originated in China. Currently, 
Fecal Microbiota Transplantation (FMT) has become recognised 
and has shown promising results for treating patients with recurrent 
Clostridium difficile infection [82]. Few studies on patients with 
ulcerative colitis, have shown promising results, but its efficacy 
for treatment for Inflammatory Bowel Disease (IBD) remains 
unclear [83,84]. Although various studies have been conducted 
on investigating the role of FMT in patients with IBS, Hepatic 
Encephalopathy (HE), Metabolic syndrome, Autism, Graft Versus 
Host Disease (GVHD), no conclusive results have been obtained 
[85-88]. In 2017, Zhou YJ et al., showed that intestinal microflora 
belonging to phyla such as Actinobacteria, Proteobacteria and 
Firmicutes have anticarcinogenic effect against solid tumours and 
leukaemia [89]. In 2016, Hu Y et al., illustrated the role of resistant 
starch as protective agent against colitis associated with CRC in 
rodent model [90].

CONClUsION
The role of the microbiota in CRC has become quite blatant and 
thereby delineates a new approach aimed at ameliorating the 
therapeutic management of patients with CRC. It is seen that the 
advancement to CRC is influenced by the metabolic output of 
the microbiota. These protective and detrimental metabolites can 
significantly influence gut microenvironment through the specific 
interactions at the mucosal level. Therefore, the diverse and healthy 
microbiota is essential in establishing stable and healthy gut 
microbiome and preventing dysbiosis characterised by a reduction 
in microbial diversity. The dietary manipulation has the ability to modify 
microbiome composition and offer desired benefits. Therefore, there 
is a need for identifying, analysing and assessing such strains for 
their long term effect on the health of the individual. There are many 
challenges which need to be addressed like the diagnostic efficacy 
of fecal microbiome is questionable as it mirrors the intraluminal 
microbiome and not mucosal microbiome. Moreover there are 
differences in the results of the numerous studies analysing the 
gut microbiome making standardisation of microbiota signature 
associated with colorectal carcinoma even more difficult. In addition 
to this, greater than 80% of our gut inhabitants are not cultivable. 
It thus becomes important to explore new molecular methods to 
characterise the microbial ecology, physiology and functional capacity.
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